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We study a particular return map for a class of low-dimensional chaotic models called Kolmogorov-Lorenz
systems, which received an elegant general Hamiltonian description and also includes the famous Lorenz-63
case, from the viewpoint of energy and Casimir balance. In particular, a subclass of these models is considered
in detail, precisely those obtained from the Lorenz-63 by a small perturbation on the standard parameters,
which includes, for example, the forced Palmer-Lorenz case. The paper is divided into two parts. In the first
part the extremes of the mentioned state functions are considered, which define an invariant manifold, used to
construct an appropriate Poincaré surface for our return map. From the “experimental” observation of the
simple orbital motion around the two unstable fixed points, together with the circumstance that these orbits are
classified by their energy or Casimir maximum, we construct a conceptually simple skeletal dynamics valid
within our subclass, reproducing quite well the Lorenz cusp map for the Casimir maximum. This energetic
approach sheds some light on the “physical” mechanism underlying the regime transitions. The second part of
the paper is devoted to an investigation of a type of maximum energy-based long-term predictions, by which
knowledge of a particular maximum energy “shell” amounts to knowledge of the future �qualitative� behavior
of the system. It is shown, in this respect, that a local analysis of predictability is not appropriate for a complete
characterization of this behavior. A perspective on the possible extensions of this type of predictability analysis
to more realistic cases in �geo�fluid dynamics is discussed at the end of the paper.
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I. INTRODUCTION

A largely studied model exhibiting chaos has been that
obtained by Lorenz in 1963 �1� by a drastic truncation of the
fluid-dynamics equations as applied to the problem of ther-
mal convection. Since then, Lorenz equations have been de-
rived and applied in a wide variety of contexts �2–6�.

Particularly, it was originally thought of for meteorologi-
cal applications, where low-dimensional models of this type
��7�, and references therein� still form the basis of our current
understanding and intuition about atmospheric and climate
nonlinear dynamics. In this respect, such models have been
used to infer the limits of atmospheric predictability �8�, and
the characteristic time of exponential divergence between
two nearby trajectories in phase space has been estimated to
have the value of about 10–15 days, at least as far as one is
concerned with synoptic-scale disturbances. This conclusion
about the existence of a predictability horizon for the atmo-
sphere has been achieved from very different approaches. A
remarkable classical argument, for instance, is based on to-
pological fluid dynamics and was carried out by Arnold in
1950 �see Ref. �9��, who estimated the characteristic time for
a two-dimensional �2D� ideal fluid on a torus having the
Earth’s size to be of the order of 2 weeks, well before the
advent of massive computer capabilities applied in this field.

Nevertheless, it was pointed out that predictability—i.e.,
error growth—strongly depends on the space and time scales
considered �see, for example, Refs. �7,10��. In fact, it turns
out that if one is concerned, instead, with the coarser-grained
atmospheric flows generally known as weather regimes,

which capture the atmospheric variability comprised be-
tween 10 and 100 days, predictability of state transitions is
greatly enhanced, as shown, for example, by the use of sta-
tistical autoregressive methods �11,12�. In particular in Ref.
�12�, an atmospheric three-level model based on the barotro-
pic vorticity equation has been used to study these transi-
tions. A parameter—i.e., the exit angle from a given
regime—has been suggested as a candidate predictor, and a
comparison with a stochastic variant of the Lorenz model has
been made. Results are encouraging, but detailed knowledge
of the regimes boundaries is required, making the application
of the method to real observations quite hard.

It is well known that thermofluid dynamical equations for
ideal systems can be put in an elegant �noncanonical� Hamil-
tonian form �13,14�. While this formulation obviously adds
nothing to the physics of the fluid systems considered, the
main mathematical structures turns out to be much more
clear in this approach. In particular, an infinite class of en-
strophylike Casimir functions are easily identified, whose
time variations are eventually due only to the action of dis-
sipation and forcing mechanisms.

In this respect, it would be useful to handle the analysis
with toy models, whose behavior can be completely under-
stood, possessing the same mathematical structure as the real
fluid dynamical equations.

On the one hand, it is a quite general consequence of the
model truncation necessary to solve numerically the equa-
tions, like the one employed in the simulation of the atmo-
sphere for operational forecasting purposes �e.g., �15��, that
the Hamiltonian form is not preserved in the resulting dis-
crete system of �ordinary� differential equations.

On the other hand, it has recently been shown that an
important class of 3D chaotic models, including Lorenz-63
and a �symmetric� variant of Lorenz-84 models, the so-called
Kolmogorov-Lorenz systems, can indeed be equipped with a
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natural geometrical group structure equivalent to that used in
the infinite-dimensional case �11�, which results in a rigorous
Hamiltonian formalism �16,17�.

The paper is organized as follows. In Sec. II the Hamil-
tonian formulation of Kolmogorov-Lorenz system is summa-
rized and the related geometrical return maps introduced.
Section III first focuses on the energetics of Lorenz-63, with
a discussion of a more general �forced� case �Sec. III A�;
then, a skeletal dynamics is constructed, based on this ener-
getics �Sec. III B�. In Sec. IV the relation between energetics
and predictability is investigated, starting from a study of
linear instability �Sec. IV A� and continuing with a discus-
sion of long-term predictions based on energy maxima �Sec.
IV B�. Section V is devoted to a proposal aimed at extending
the connection found to more realistic fluid dynamical sys-
tems, while Sec. VI concludes the paper with a few final
comments.

II. HAMILTONIAN FORMULATION
AND GEOMETRICAL MAPS

The main peculiarity of the Lorenz-63 model consists in
the following: for a suitable choice of the parameters, a cha-
otic macrodynamics can be identified, which consists of sud-
den and unpredictable transitions between two separate re-
gions in phase space, which will be referred to as the left
��L� and right ��R� regions covering the attractor �
=�L��R.

As can be easily shown �18�, this macrodynamics can be
characterized by a simple statistical law, using a new
discrete-time map having a precise physical meaning.

On the other hand, it can be demonstrated that the
Lorenz-63 system

ẋ1 = − �x1 + �x2,

ẋ2 = − x1x3 + �x1 − x2,

ẋ3 = x1x2 − �x3 �1�

is not but a particular example of a much wider class of
models with a well-defined geometrical interpretation, the
so-called Kolmogorov-Lorenz equations, in which a clear
distinction among Hamiltonian, dissipative, and forcing
terms is made �16�.

To be specific, the right-hand side of Eqs. �1� can be writ-
ten as the sum of the Lie-Poisson brackets of the algebra of
the SO�3� spatial rotation group and of a dissipation and
forcing term �from hereon the Einstein summation conven-
tion is used�,

ẋi = �xi,H� − �ijxj + f i �i = 1,2,3� , �2�

assuming the following gyrostatlike Hamiltonian:

H =
1

2
�ikxixk + hkxk, �3�

where �=diag�2,1 ,1�, �=diag�� ,1 ,�� is the dissipation
matrix, h= �0,0 ,−�� an axisymmetric rotor, and f= (0,0 ,

−���+��) an external forcing. An important result of this
formalism is that there is not chaotic behavior in the system
for h=0.

Here the brackets represent the algebraic structure of the
Hamiltonian part of the system described by the function H
and a cosymplectic form J �19� defined by

�F,G� = Jik�iF�kG . �4�

For a conservative system, in the local coordinates xi, the
Lie-Poisson equations read as

ẋi = �ijkxj�kH , �5�

where the Levi-Cività symbol �ijk represents the constants of
structure of the algebra g=so�3� and the cosymplectic matrix
assumes the form Jik=�ijkxj; in this formalism, g is endowed
with a set of Poisson brackets characterized by Eq. �2� for
functions F ,G�C	�g*�.

Casimir functions C are given by the kernel of the set
brackets �4�—i.e., �C ,G�=0, ∀ G�C	�g*�; therefore, they
represent the constants of motion of the Hamiltonian system,

Ċ= �C ,H�=0.
In a geometrical language, these constants of motion de-

fine a foliation of the phase space �9�, and motion takes place
at the intersection of the ellipsoid E : 1

2�ikxixk+hkxk=H with
the sphere S2 given by the Casimir xkxk=C, leading to Euler
dynamics for the rigid body,

x�t� � E � S2. �6�

In the general case of a dissipative-forced system �17�, the
dynamics is also constrained by �6�, but in this case the two
geometrical objects S2 and E do expand and contract in a
chaotic way, reaching a set of maximal and minimal values
during their evolution. In particular, it is natural to consider
the set of x�t� such that S2 reaches a relative maximum or
minimum radial value. This is given by imposing the simple

condition Ċ�t�=0, which using Eq. �2� reads as −�ikxixk

+ f ixi=0 and defines an invariant ellipsoid, whereas the curve

C̈�t�=0 on this surface separates the maxima from the
minima regions. Besides, the maximum distance of the
points on the ellipsoid from the origin of the coordinates
identifies, by construction, the radius of a sphere in which
the attractor is entirely contained. Incidentally, these geo-
metrical conditions can be used to verify the consistency of
this type of numerical simulations.

Let us now specialize to the Lorenz case of Eq. �1�. As is
well known, for a suitable choice of parameters the solutions
of Lorenz equations are given by chaotic trajectories revolv-
ing around the three unstable fixed points of Eq. �1�. In Ref.
�18� a clear geometrical method has been established to com-
pute the frequencies of these chaotic oscillations.

Now, the dynamical condition Ċ�t�=0 can be translated in
geometrical terms by the requirement that points have to lie,
after the translation �x1 ,x2 ,x3�→ �x1� ,x2� ,x3��= �x1 ,x2 ,��x3

+���+�� /2���, on the ellipsoid of rotation centered in the
origin of coordinates:
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EC:�x1�
2 + x2�

2 + x3�
2 = ���� + ��

2��
	2

, �7�

which is a fixed manifold with respect to the chaotic motion
on the attractor x��t���, with a fractal structure for �. In
this way it is natural to choose the Poincaré section for the
Lorenz attractor as the intersection

x��tk� � EC � � . �8�

Such an intersection defines four symmetric regions on the
ellipsoid EC, representing the sets of max�C� and min�C� for
the two lobes of �, as shown in Fig. 1. Return maps for
these points give the periods of rotation and revolution, re-
spectively, about each lateral fixed point and about the cen-
tral unstable point.

To fix the ideas let us concentrate on the first return map
of one of the maxima—the left one, say. The spectrum of the
return times depicted in Fig. 2 shows a definite band struc-
ture with a constant spacing separation, which can be inter-
preted as follows: starting from the bottom, the first band
�index n=0� represents a single rotation in the left lobe, the
second �n=1� corresponds to a semirotation in the left lobe
followed by a complete rotation in the other lobe plus a
semirotation in the starting lobe, etc.

So the nth band corresponds to n complete rotations in the
right lobe and return.

The constant spacing separation along the time vertical
axis amounts to a characteristic time of 
0
0.66 units and
can be defined as the spacing between the barycenters of the
point distributions of the bands.

Because of the reflection symmetry xi→−xi, i=1,2, in
Eq. �1� �the same holds for the variables xi��, the identical
statistical behavior can be verified, taking as starting point
the maximum on the right side—analogously for the minima,
which present slightly different statistics.

It should be stressed that even if a similar result can be
expected also for other suitably chosen Poincaré sections, the
regions of extrema on the invariant ellipsoid correspond to a
very natural choice within our class of models, being auto-
matically defined for all of them. Also, we point out the
identical structure of the map of Casimir maxima relative to
the standard x3 Lorenz cusp map �see Fig. 11�a��. Moreover,
in order to distinguish the jumps in the time sequence Cn�
max�C�, n=1,2 , . . ., between �L and �R, it would be more
natural to consider the regime-selective map for the set of
values Dn=��x1�Cn, where ��x1�= +1 for x1�0 and ��x1�
=−1 for x1�0. In the following we will also consider the
discrete map of maximum Casimir referring to a single lobe.

III. ENERGETICS OF LORENZ-63

We are now going to consider the behavior of the system
from the viewpoint of the energy and Casimir functions.

A. Energy balance between forcing and dissipation

As follows immediately from Eqs. �2� and �3�, even if
energy is not conserved, the energy gain in a given finite
trajectory on the attractor should be equal to the time integral
of the sum of the injection power and of the dissipation
power along the track,

E�t2� − E�t1� = �
t1

t2

Ḣ dt = − �
t1

t2

�ij��ikxj + hk�xkdt

+ �
t1

t2

f i��ikxk + hi�dt . �9�

Since the �natural� forcing injection and the dissipation loss
vary in a different way on the attractor, being functions, re-

FIG. 1. �Color online� Ellipsoid of Casimir extremes intersect-
ing the attractor in four regions, the two stripes in the semispace
x2�0 representing the set of maxima and the remaining two �x2

�0� the minima.

FIG. 2. Band structure of the return times. In the horizontal axis
the ordinal number of Cmax and Cmin is found in the simulation.
Because of the reflection symmetry, point distributions in the bands
for the right and left side overlap quite well, so that they are not so
well distinguishable in the figure.
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spectively, linear and quadratic of the phase-space coordi-
nates, the energy balance �9� acts to constrain phase-space
points on well-defined paths on the attractor.

The three curves depicted �not in scale� in Fig. 3 represent
the total energy �bottom curve�, the forcing-dissipation
power �highest amplitude oscillations in the figure�, and the
x1 coordinate. From the analysis of these curves it emerges
that, from an energetic viewpoint, the system soon after a
passage from the companion lobe tends to acquire energy
around the unstable central fixed point, where the �positive�
forcing pushes the systems towards higher maximum ener-
gies, which are reached on a peripherical side of the lobe, as
can be seen from Fig. 4, in which energy injection per unit
length,

Ė/�v� , �10�

is represented, where v= �ẋ1 , ẋ2 , ẋ3� is the velocity field.

After the energy maximum has been reached, dissipation
becomes more and more important along the system’s trajec-
tory, causing energy loss. If this loss exceeds a threshold, the
energy gain near the center of the attractor is not sufficient to
sustain another oscillation around the fixed point of the cur-
rent lobe and the system is pushed into the other regime.
Otherwise, the system is allowed to experience another turn
within the same lobe along a more external trajectory and so
on. It is then possible that the system’s state performs n turns
within a given lobe, experiencing at each successive step
more and more external turns around the fixed point. As is
shown in Fig. 5, because of the greater energy gain near the
attractor’s center, it happens that the very internal trajectories
acquire much less energies when passing there than more
external ones. At the same time the former ones suffer only
for a small dissipation in each turn. As a result, the small
amount of energy acquired allows for a small radius incre-
ment of the trajectory itself in a complete turn. This fact, on
the other hand, leads to a higher number of consecutive turns
inside the given lobe, up to the “critical” one, in which dis-
sipation becomes unsustainable and the system “decays” into
the other regime. This is the qualitative explanation of the
cusp form of the Lorenz map from an energetic viewpoint.
Incidentally, it can be verified that the same type of maps can
be obtained for both energy and Casimir maxima.

Moreover, it results from a simple inspection of Fig. 3 that
the most external orbits above the critical radius end up in
very internal orbits on the other lobe, which means a large
number of consecutive turns within this latter. This circum-
stance strongly suggests that maximum energies could be
linked to the number of turns the system will perform on the
other lobe—i.e., to the long-term behavior of the system, as
we will verify later.

Finally, in order to give the flavor of the generality of the
present approach, we briefly consider the case studied in Ref.
�6�, in which a regime-selective behavior is obtained through
the introduction of a further �weak� forcing in the x1 and x2
equations, parametrized by the angle 
. In a more general
case, assuming a forcing f,

FIG. 3. �Color online� Time variation of total energy �bottom
curve�, forcing-dissipation power �highest amplitude oscillations in
the figure�, and x1 coordinate. The variables are represented not in
scale; in particular, the plotted functions are, respectively, E�t�
−6000, Ė�t�, and 50x1.

FIG. 4. �Color online� Energy acquired per unit length repre-
sented in the plane �x1 ,x2� by time averaging on the x3 direction.

FIG. 5. �Color online� Total energy represented in the plane
�x1 ,x2� by time averaging on the x3 direction.
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f1 = f cos � cos 
 ,

f2 = f cos � sin 
 ,

f3 = f sin � , �11�

where f =−���+��, it is easy to show that for �� �
2 there is

a symmetry breaking in the Lorenz equations, leading to dif-
ferent statistics and predictability on the two lobes. What
happens, from an energetic viewpoint, is that the introduction
of this additional forcing modifies the central “hill” of Fig. 4
�with a simultaneous small displacement of the lateral un-
stable points, the form of the attractor remaining essentially
the same� in such a way that it becomes asymmetric—i.e., a
bit more pronounced �with the values set in Ref. �6�� on a
lobe than on the other—the dissipation term remaining the
same. In such a way, on the lobe in which it is more pro-
nounced, internal orbits are forced to acquire more rapidly
energy, so that the representative point is pushed, on the
average, a bit faster towards the opposite regime. Con-
versely, for an internal orbit originating in this latter,
maximum-energy growth is decelerated, so that the �mean�
residence time of the representative point in that regime is
increased. This gives rise to the observed difference in the
pair distribution function �PDF� on the two lobes.

B. Orbits and skeletal dynamics

It is an “experimental” observation that, starting from the
Lorenz type of the Kolmogorov-Lorenz systems settled with
the original Lorenz parameters ��=10, �=28, �= 8

3 �, for a
wide range of variations around them, within the chaotic
regime, some peculiar dynamical properties are kept robust
�see, e.g., the case of Ref. �6��. These properties refer, for
example, to the fractal dimension of the attractor, which may
preserve approximately the value of d
2.06, and to the
macrodynamics, which remains qualitatively unchanged.

Moreover, it is important to note that the sets of maximum
energies have a natural ordering, i.e., maximum energies are
growing functions of the orbit radius in each lobe �see Fig.
6�. Note that this property does not hold for the minimum
ones.

Then, apart from the fine-grained structure, the fractal at-
tractor can be geometrically approximated by a two-
dimensional manifold. To be specific we consider two dis-
tinct surfaces, one for each wing of the attractor, which glue
together at the points in which the lines, originating in a
given region, enter the opposite wing. We have obtained such
surfaces by interpolating 103 uniformly distributed points in
each lobe, with two third-order polynomials in the variables
x1 and x2, z�x1 ,x2�. So the left and right wings are geometri-
cally described, respectively, by the metrics �induced by the
usual Euclidean 3D metric of the phase-space� gL and gR.

In this setting, of course, the fractal regions of points of
maximum energy are reduced to lines, being the intersections
between the attractor surfaces and the invariant energy ellip-
soid.

On the basis of the above “experimental observations” we
construct our skeletal dynamics by making the following as-
sumptions.

�i� The dynamics takes place on a two-dimensional mani-
fold, a union of the two surfaces described above.

�ii� The basic geometrical elements of the trajectories are
�a� circles �in the metric g� around the two lateral fixed
points and �b� lines connecting circles on the two lobes.

�iii� Each circle, or orbit, intersects the curve of the en-
ergy maxima at a certain point. Then the next orbit is defined
via the energy �forcing+dissipation� acquired in a complete
turn in such a way that it will intersect the curve at a new
point whose energy corresponds to the acquired energy
added to the previous maximum �see Fig. 7�b��.

�iv� When the energy acquired within one orbit happens to
be negative, the orbit itself is not completed, and at a certain
point the motion is switched to a tangent line, until it reaches
the other wing; from this moment on, the motion continues
on the orbit passing through the crossing point and the cycles
restart on the other “wing;” the switching point is determined
in a self-consistent way by requiring that the energy acquired
along the segment connecting the two lobes amount to the
energy difference between the end points.

From these rules we will derive a number of conse-
quences.

We start from the “forecast” of the number of turns the
representative point will experience within the starting lobe
and in the successive one soon after we have detected an
energy maximum E0 at a certain instant.

The number of turns made within the starting lobe is the
maximum n such that



�n

Ḣ

�v�
ds � 0, �12�

where the line integral is performed along the nth orbit �n,
while the maximum energy acquired in lobe L�R� is given, in
an explicit, form by

FIG. 6. �Color online� The ordered sets of Casimir maxima �the
two stripes in the semi-space x2�0� and minima �the remaining
stripes, with x2�0� are displayed on the attractor. Maxima are
monotonic along the stripes, growing from the internal orbits to the
external ones, while minima are not.
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En = E0 + �
i=1

n 

�i��i−1�

− �kj��kkxk + �k�xj + fk��kkxk + �k�

��
i=1

3

��xi,H� − �ijxj + f i�2

ds .

�13�

The line element in the equations above is

ds = �gij
L�R��x1,x2�dxidxj ,

gi,j
L�R� = � �1 + �x1

z�2 ��x1
z���x2

z�

��x1
z���x2

z� �1 + �x2
z�2 � . �14�

Now, using this “theory of orbits,” we compute the succes-
sive �maximum� energy levels starting from a given maxi-
mum. The result is depicted in Fig. 8, against the true cusp
map of maxima.

Given the good correspondence of the skeletal model
points with the true Lorenz cusp map, we can conclude that
our theory of orbits captures the gross features of the dynam-
ics. Since each orbit is, by definition, unambiguously associ-
ated with a maximum of energy, we can conclude that this
quantity is a good control parameter for the system’s behav-
ior.

It should be stressed that the present skeletal model is
only intended to give an energetic justification of the Lorenz
cusp map; i.e., for a given Casimir maximum, it furnishes the
approximate next value of this latter, the full chaotic dynam-
ics remaining, in any case, not reproducible by substituting
the fractal set of the attractor with a regular surface.

FIG. 7. �Color online� �a� Connecting surfaces obtained by interpolating 103 points for each wing using two third-degree polynomials in
the variables x1 and x2, z�x1 ,x2�: A+Bx1+Cx1

2+Dx1
3+Ex2+Fx1x2+Gx1

2x2+Hx2
2+ Ix1x1

2+Lx2
3, with A=−22.95, B=5.25, C=−0.62, D=0.03,

E=−3.31, F=0.76, G=−0.05, H=−0.21, I=0.03, and L=0.01 for the right side and the polynomial obtained from this latter by reversing the
coordinates for the left side. �b� Schematic view of the orbits intersecting the curve of energy maxima.

FIG. 8. �Color online� Lorenz cusp map points �dots� for the Casimir maximum plotted against the experimental map �solid line�.
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IV. ENERGETICS AND PREDICTABILITY

In this section we discuss the connection between ener-
getics and predictability. We analyze this latter first in the
“local” �linear� approach; then, we pass to a longer-term pre-
dictability analysis based on nonlinear evolution and to an
interesting use of energy and Casimir maxima as control
variables to infer the qualitative future behavior of the sys-
tem.

A. Local instability by linear perturbation analysis

Let us calculate the analytic expression of the perturbation
growth rate in the natural Euclidean metric as a function of
coordinates, and with a parametric dependence on the vector
of the initial perturbation, on the �small� time interval of the
evolution considered.

To be specific, we consider the evolution of two nearby
initial points xi

0 and x̃i
0. The dynamical equation for the dif-

ference is

d

dt
�xi − x̃i� �

d�xi

dt
= ��xi,H� − �ij��xi� , �15�

from which, considering a sufficiently small time interval �t,
we get the equations for �xi��t�:

�xi��t� 
 �xi
0 + �t��kj�ijk�xkxj − x̃kx̃j� + hk�ijk�xj��t�

− �ij�xj��t�� � �xi
0 + M̂ij�xj��t� . �16�

Solving this linear system with respect to �xi��t�, the pertur-
bation vector growth rate can be conveniently expressed by
�15�

� =
1

�t
ln

�
k=1

3

�xk
2��t�

�
k=1

3

�xk
02

=
1

�t
ln

�
k=1

3

�det�M̂ij
�k��/det�M̂ij��2

�
k=1

3

�xk
02

,

�17�

where the matrix �M̂ij
�k�� is obtained from �M̂ij� by substitut-

ing the kth column with the vector ��x1
0 ,�x2

0 ,�x3
0�T.

In Fig. 9 the growth rate is depicted along the curve of
maximum energies of the skeletal attractor setting a time step
�t=0.02 and choosing the initial errors �xi

0
O�10−1�, re-
spectively, along the curve and in the fixed direction �1,1,1�.
The result is that there is only one evident maximum, corre-
sponding to an energy E and a Casimir C, and for which,
conversely, local predictability reaches its minimum. This
maximum identifies precisely the critical point of regime
transition on the line of maxima. Rapid oscillations in the
second case are only due to the fact that one of the initial
conditions �in each couples of initial conditions considered�
in general does not belong to the attractor. We point out that
the long-term predictability we will be concerned with can-
not be identified by means of a �local� linear analysis of
instability in the regions of maxima. In fact, as we will see in
the following, a new type of long-term predictability
emerges, in which knowledge of the starting energy shells
above the critical point identifies precisely the number of
turns, and then the mean time the opposite regime will last.

B. Long-term predictions using energy maxima

We have already seen and interpreted the band structure
of the return times of our Poincaré map.It is interesting that,
when considering the return times as a function of the energy
or Casimir maximum, we find the ordered structure depicted
in Fig. 10. Starting from a Casimir maximum on a given
lobe, the system’s state will wander around through the at-
tractor and then, after a certain time, it will return to another
maximum on the same lobe. The map of Fig. 10 contains the
return times plotted against the Casimir as obtained in a
long-time integration of 40�106 calculation steps. This
emerging band structure �the same holds true for the energy�
can be easily linked to the band structure of Fig. 2 and inter-
preted in an analogous way: the first band �from the left�
corresponds to a turn within the starting lobe, while the �n
+1�th band corresponds to n turns on the other lobe and
return.

So, in other words, to a certain maximum Casimir range it
corresponds to a precise return time, so that knowledge of
this quantity, according to the discussion above, amounts to
knowledge of the number of turns on the other lobe.

FIG. 9. Growth rate calculated along the curve of maxima �parametrized by the affine parameter �� going from the internal orbits �lower
values of �� to the external ones and taking the initial perturbations along the curve �a� and in the �1,1,1� direction in the phase space �b�.
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An interesting question is whether a given Casimir maxi-
mum also determines its next map iteration value, in such a
way that one could be able, not only to forecast the next
number of turns, but also the successive ones and so on, with
the possibility of encoding a complete symbolic dynamic
description of the system in an ordered sequence of the num-
ber of turns alternatively performed on the two lobes.

Also, we can look at our system as a black box, whose
input is the entrance energy—i.e., an initial maximum of
energy on a given lobe—and the output is the energy maxi-
mum on the same lobe when the system is back. Figure 11
shows the map of Casimir maximum on a given lobe—for
example, the right one, Cn+k

r = f�Cn
r� �the label r is to stress

the fact that we are considering here the map connecting
Casimir maxima only at right�. It is immediate to note that to
a little uncertainty �Cn

r in the entrance Casimir maximum it
corresponds, in general, a greater uncertainty �Cn+k

r in the
exit Casimir maximum. Moreover, the ratio �Cn+k

r /�Cn
r


�f /�Cn
r is, on the average on the bands, a growing function

of the band index i, up to i=10.
In Fig. 11�b� two examples are considered. In the first,

starting with the uncertainty �C1
r of the right lobe maximum,

the system comes back at the next passage with a greater
uncertainty, but with the Casimir range extremes still lying
on the same band �the third one�, meaning that after the
subsequent jump the number of turns is still predictable.

In the second example, instead, the uncertainty �C2
r

propagates in such a way that at the first passage the number
of turns on the other lobe is precisely determined to be 4, but
after the following transition this number is uncertain, rang-
ing from 0 to 3.

Now, taking the set of maximum-energy points comprised
within the extremes of a band, we can consider the flux tube
determined by the dynamics in a neighborhood of this set.
We will refer later on to these �local� fux tubes as to energy
or Casimir shells.

We will now perform an ensemble long-term prediction to
test, in particular, the sensitivity of a region enclosed in a
given energy shell to the future behavior of the system, in
comparison with the sensitivity of a somewhat other region
on the attractor having the same phase-space extension �in
the natural Euclidean metric�. Alternatively we could have
used the metric defined by energy and Casimir maxima
themselves.

To be specific, consider a series of numerical experiments.
In each one we take two sets of points, both belonging to the
attractor and contained in the intersection of two equal
spherical shells, the former contained within a given Casimir
shell, the latter centered about a random point on the attrac-
tor. Then we let the two sets evolve. The intersection of the
two spherical shells with the quasi-2D attractor approxi-
mately defines two coronas. We choose their internal and
external radius in such a way that the first corona is entirely
contained within a shell. The choice of external radius, on
the other hand, is somewhat arbitrary, and it is only justified
by the need of avoiding, as far as possible, the “noise,” due
to very nearby points, which are expected to have in a natu-
ral way a similar future behavior in our comparison experi-
ment.

Two such experiments are illustrated in Figs. 12 and 13,
respectively, for the case of an initial set chosen in a shell of
Casimir maximum and centered in a random point on the
attractor. It can be noticed that in the first case all the trajec-
tories, after the transition, perform five turns on the other
side, while in the second case they rapidly diverge. In the
latter case this fact can be accounted for by noticing that the
first Casimir maximum associated with the different trajecto-
ries is characterized by a wide spreading of values.

Here the operating principle is that two-nearby trajecto-
ries in the bulk of a lobe, the most densely occupied and
internal part of it, can belong to really different histories,
arriving within the lobe at maximum energy values corre-
sponding to far distant away energy shells. Otherwise, in the
opposite case, they may belong to trajectories ending in the
same shell, this latter condition ensuring a similar future be-
havior.

Besides, it should be stressed that there are cases in which
the random corona considered on the attractor results in a

FIG. 10. �Color online� Return times as a function of Casimir
maximum.

FIG. 11. �Color online� Lorenz cusp map for the Casimir maxi-
mumn �a�. Casimir maximum on the right side, Cn+k

r , as a function
of the previous Casimir maximum on the same side after k−turns,
Cn

r �b�.
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good predictability; i.e., all the trajectories starting from it
are found to experience the same number of turns after the
regime transition, and even later, after the subsequent transi-
tion, the predictability of this number can also be quite good.
In Fig. 14 is shown a case like that, choosing a different
point on the attractor. Again we can see that predictability is
controlled by the Casimir maximum. In fact, the first maxi-
mum shows a very small dispersion around a relatively low
value, and as a consequence most of the trajectories experi-
ence four tours in the negative-x regime, while the remaining
ones only three. Things began to be worse with respect to
predictability in the subsequent jump, which can be foreseen
by the great dispersion of the previous Casimir maximum in
the high values range. Still we conclude that future behavior
is better foreseen at the particular moment in which the sys-
tem reaches a maximum value of the control Casimir func-
tion.

V. PERSPECTIVES ON POSSIBLE EXTENSIONS TO
MORE REALISTIC FLUID-DYNAMICAL SYSTEMS

The Hamiltonian description of the Kolmogorov-Lorenz
systems and the construction of the invariant ellipsoid of the
energy and Casimir maxima, with the associated return map,
can be easily generalized, at least formally, to the case of a
real fluid. Let us consider, for example, the energy in a 3D
homentropic fluid in a given spatial domain. In the ideal case
the fluid dynamics can be completely described by the
Hamiltonian

H�u,x� =� � � da�1

2
u2 + �� �x

�a
,��a�� + ��x�� ,

�18�

where u and x are, respectively, the velocity and coordinates
of the fluid particles, a an arbitrary labeling of them satisfy-
ing the condition da=d�mass�, � the internal energy, � an
external potential, and � the specific entropy �20�. The pres-
ence of a forcing and a dissipation can be accounted for by
adding to the equation of motion the corresponding terms

Du

Dt
= −

�H�u,x�
�x

Dx

Dt
=

�H�u,x�
�u

+ �forcing + dissipation� . �19�

Now, the equation DH /Dt=0 defines an hypersurface in the
�infinite-dimensional� space of states, whose intersection
with the global attractor contains the set S of points of maxi-
mum energy. This set should be divided into subsets, one for
each possible regime, which in the toy model of Lorenz are
easily identified with the fractal sets of the two lobes. In the
general case the regimes are not so clearly defined �21,11�.
Since our approach is inevitably empirical and aimed at a
possible practical application of energy-based long-term pre-
dictions to more realistic situations, the problem of defining
quasistationary regimes can be afforded in an empiric way

FIG. 12. �Color online� Evolution of x3 �upper panel� and Casimir maximum �lower panel� starting from several initial conditions,
different from each one but belonging to the same Casimir shell.
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by considering a grid discretization in the space or a trunca-
tion in the spectral domain and applying the well-known
empirical orthogonal function �EOF� analysis to the system’s
evolution �see, e.g., Ref. �18��, as is currently done in me-
teorology �22�. This analysis extracts a certain, hopefully

small, number of preferred configurations capturing the main
variability modes of the system. For simplicity, the analysis
can be restricted to a fixed height or pressure level. There-
fore, imagine that the fluid is the atmosphere and the domain
of integration the whole spherical surface of the Earth. A

FIG. 13. �Color online� Evolution of x3 �upper panel� and Casimir maximum �lower panel� starting from several initial conditions chosen
within a corona of the same extension as before �Fig. 11�, but centered at a random point on the attractor.

FIG. 14. �Color online� Evolution of x3 �upper panel� and Casimir maximum �lower panel� starting from several initial conditions chosen
within a corona of the same extension as before �Fig. 12� and centered at a different random point on the attractor.
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good pressure level to study preferred configurations is the
middle tropospheric level—i.e., the 500-hPa pressure level—
and as far as we are concerned with climatic regimes, we can
consider the monthly-averaged geopotential height anoma-
lies. Denoting �i,k� the height anomaly for the ith grid point
and the kth month, the preferred patterns, also called loading
vectors, are obtained by taking the �first� orthonormal eigen-

vectors E� i of the covariance matrix

R̂i,j �
1

N
�

k=1. . .N
�i,k� � j,k� �20�

and multiplying it by the corresponding eigenvalue �i repre-
senting the fraction of the total variability �22�. A given
height anomaly field can then be written as a linear combi-
nation

�� k� = c1,k�1E1 + c2,k�2E2 + ¯ + � , �21�

where � indicates the residual state not represented by the
first preferred patterns. As in Ref. �12�, regimes can be found
by studying the statistical distribution of states in the sub-
space spanned by the first EOFs. Now, it is possible to con-
fine the maximum energy values, which can be extracted
directly from the observed time series and with the time
resolution of the meteorological analysis, to one of the iden-
tified regimes—of course, in the region of phase space where
they are well defined.

It is sufficient, for this purpose, to retain only those values
whose corresponding coefficients ch,k are simultaneously
found within some appropriate intervals, which define a vol-
ume in the mentioned subspace. Note that, in this case, pre-
cise knowledge is not required of the regimes themselves, in
particular of their boundaries, which are quite arbitrary and
strongly dependent on the analysis method employed.

Having defined the set of maximum energy points for a
given regime, it can be experimentally verified if a given
range of maximum energies is associated with a qualitative
future behavior, such as the transition to some other regime
and the mean residence time within it. We note that the pre-
dictor parameter used in Ref. �12� is not sensitive to this
latter feature.

It should be stressed that, of course, there is not any a
priori reason why this correlation should be found in more
realistic cases as in our toy models, but if so, an experimental
mapping of these maximum energy ranges and the associated
long-term behavior could become a powerful instrument, for
example, in weather regime forecasting. In this respect, it is
worth noting that the presence of a constant forcing has been
tacitly assumed up to now. In the case of climate we have of
course a time periodic variation of the intensity of solar ra-
diation reaching a given area of the planet, and the energy
maximum in a given regime strongly depends on the period
of the year considered, so that this situation requires a spe-
cific investigation, even in the framework of the simple low-
dimensional systems we have considered.

VI. CONCLUSIONS

In conclusion, the use of the Hamiltonian formalism ap-
plied to the Lorenz model leads to an interesting “physical”
interpretation in terms of discretized orbits and �maximum-�
energy levels. The resulting skeletal dynamics, which takes
place on a simplified two-dimensional manifold, seems to
capture the basic mechanism underlying dynamics and, in
particular, regime transitions. Besides, we have classified up
to ten maximum-energy shells in such a way that, starting
from a point within one of them, the number of turns the
system experiences in the other regime is precisely deter-
mined.
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